Don't forget to clear your browser's cache every time you visit as changes are sometimes made several times daily.

For W0EB's Bug "Dot Stabilizer" Page, click here.
Quick Link to W0EB/W2CTX uBITX files directory.
Quick Link to W0EB's Jack Strip breakout board page.
TSW's Older Projects, (Raduino Clone and BITeensio Kits ARE available) Page-2. (new beta software posted 5/6/2019)

Recent Announcements: We still have the "Raduino Clone" and BITeensio kits in stock and available. We also have the popular Jack Strips and the Power Switching boards in stock as well. See the link to Page 2 above where you will find the details on the kits.

Our Raduino Clone board using Farhan's factory V5.1 software will operate just fine with the V5 uBITX. TSW's BITeensio card will also integrate smoothly. W2CTX has written "all-in-one" software for the BITeensio's Teensy 3.6 with either 2.8" or 3.2" ILI9341 Color TFT displays that will, with a simple menu selection, switch smoothly between V3/V4 (we call these VL for "Legacy) uBITX rigs and the new V5 uBITX. You have to calibrate it for each version, but calibration data for each version is stored in different locations on the Teensy 3.6 SD card. Once done the menu selection will allow for moving the card smoothly between VL and V5 rigs. The default is V5 and the version is displayed discreetly on the sceen. This operational but "Beta" software is available now in the files section to use with both the 2.8 and 3.2" color touch screen displays. (Remember, these displays are NOT Nextion displays!) For further details click on the "Older Projects (Page2) link above and any new information will be posted there once we have it.

_______________________________________________________________________________________________

TSW
The "Triumvirate Skonk Worx" Presents:

TSW's Latest proect, Power Switching Adapter Kits by W0EB

Bare boards and full kits are now available.


Enlarged view of the new Regulated Switch Adapter PCB Layout


Enlarged view of the Switch Adapter PCB Layout

The unregulated adapter allows for DC power input, on/off switch and power output wiring to be conveniently connected on a common board and have the option of using plugs for quick connect/disconnect or permanently soldering wires to the PC board. An optional polarity protect diode is also provided for and can be jumpered out if not used. The PC board pads allow for Molex or Molex style polarized pin plugs and jacks of either 2.56 or 3.54 millimeter spacing so that input power, output power and the switch connections can be plugged and unplugged easily. This can make equipment control panel on/off switching easy to remove for trouble shooting and quickly reconnected without having to unsolder/re-solder the wire connections. The kits will contain the PC board and ALL parts to include the female MOLEX type connectors and crimp pins. The optional diode is to be user supplied and not included in the kit.

The TSW Switch Adapter is now available. There are 2 options.

1: Bare PC Board $3.00 shipped in the US, $5.00 shipped internationally.
2: Complete kit (includes all connectors & crimp pins) minus the polarity protect diode (optional/user supplied), $8 shipped in the US, $21 shipped internationally.
(International First Class postage runs $13 to $15 USD with the recent U.S. Postal Service's price increases.)

What's actually in the complete kit.

The regulated adapter allows for DC power input, on/off switch and power output wiring to be conveniently connected on a common board and have the option of using plugs for quick connect/disconnect just like the unregulated one but adds the convenience of an auxiliary, regulated output that is also switched on and off. Since the auxiliary output regulator can be anything between 3.3V and 10 or 11 volts depending on the selected TO-220 regulator IC, the regulator and it's normal stability bypass capacitors are not included in the partial kit. These are to be user supplied depending on the auxiliary output voltage the user desires. For a small additional fee (see option 3) a 5 volt regulator (7805) and proper capacitors can be included. The protection diode is still to be user supplied.

An unplanned benefit of the regulated configuration is that simply by jumpering the regulator's IN terminal to the OUT terminal using insulated wire so not to short either input or output to ground accidentally The voltage at the V-REG header can be equal to the voltage at V-IN and V-OUT.

There are 3 options.

1: Bare PC Board $3.00 shipped in the US, $5.00 shipped internationally.
2: Partial Kit (includes all connectors & crimp pins but not the diode) $8 shipped in the US, $21 shipped internationally. (International First Class postage runs $13 to $15 USD with the recent U.S. Postal Service's price increases.)
3: Complete 5 volt Kit with 7805 TO-220 regulator, heat sink with mounting hardware and bypass capacitors (less polarity protect diode) $12 shipped in the US. $24 shipped internationally.

What's actually in the basic auxiliary regulated kit. Option 3 includes a 7805, heat sink and 4 capacitors not shown.

For more information or to order one (or more) please contact W0EB through the EMAIL link at the bottom of this page. There is NO order link you have to email W0EB.

Click to download the Switched Power Adapter construction manual (covers both versions).

_______________________________________________________________________________________________


Stand Alone DSP CW/SSB/Digital Audio Filter (Semi-Kit)

"Semi-Kits" are available now, details near the bottom of the page.

_________________________________________________________________________________________________________


TSW Audio Filter packaged in a 4 State QRP "Medium" (5.5" X 5" X 2") PCB enclosure W0EB had on hand. Unfortunately 4SQRP discontinued the enclosure.

This project got started late last year when TSW's master programmer, Ron - W2CTX came across an article on the internet by Gareth, GI1MIC. Gareth used a small Teensy 3.2 development MPU from PJRC.com, noting the Teensy 3.2 has a reasonably decent on-board ADC (analog to digital converter)/DAC (digital to analog converter) and is fast enough, with enough memory to be able to do DSP audio processing and so had the capability of creating tunable audio filters with varying low and high skirt frequencies which gives variable bandwidth capability and also once the bandwidth is established, the filter's center frequency can be easily moved to align it to the incoming signal. Gareth's initial focus was on creating a built-in, tunable CW audio filter for his Yaesu FT-817.

The TSW crew had been working on add-on controller boards and color displays for the HF Signals uBITX transceiver and Ron-W2CTX thought a similar filter might benefit the uBITX. We put our heads together and came to the conclusion that it should first be built as a "stand-alone" filter to prove the concept and also because it's not just the uBITX that could benefit from a tunable audio filter and we didn't want to limit things to just the uBITX when we could possibly benefit many others in the process.

Originally, we used much of GI1MIC's published, open-source Teensy code and his original wiring to test the concept. Ron, W2CTX, in working with the original code and achieving some success, began refining the code to fit our own concept of what types of filtering we would most like to have. We eventually came up with 3 filter types, CW, SSB and RTTY (since changed to "DIG" for Digital) as it is versatile enough to handle most of the current digital modes being used. Ron found that he could remove almost all routines dealing with control by the FT-817 that were not really pertinent to the stand-alone concept we were working on.

Our version originally used a 1.44" TFT Color Display that did not have touch capability. We subsequently found a much better,slightly larger 1.8" TFT Color Resistive Touch Screen and attempted to use that in place of the original "non-touch" display. There were a few growing pains with the 1.8" display. At first we could not get the touch feature to work with the Teensy 3.2 and both Ron and I were beating our heads on the table trying to figure out what was happening.

We purchased the displays from www.buydisplay.com and it's their ER-TFTM018-2 with the "pin header, 4-wire SPI controller", "3.3V power" and "Resistive Touch Screen installed" Asking for help from the supplier, they said they didn't have a Teensy 3.2 to test it with so essentially we were on our own. It came down to the fact that we needed to use the same "clock" pulse to set the timing for both the display "Chip Select" and Touch "Chip Select" functions.

The Teensy 3.2 apparently has a much faster and narrower pulse output for this function. We had to parallel the two "Clocks" and if I disconnected the clock from the "Touch" controller the display would work, but not the touch. Reconnecting that clock, nothing worked. It appeared to be related to the timing of the two "Chip Select" pulses relative to the clock pulses. I finally got out my oscilloscope and while checking to see how close together both "CS" pulses were occuring, that the extra capacitance introduced by the scope probes and cables made things work. Taking an approximate guess at what value to use, I added a 47 picofarad capacitor to ground at each of the chip select pins on the display and BINGO! The display and touch now worked! I played around using different values for these capacitors, but it turns out 47 pF is just about perfect so 47 pF it is.

Once that hurdle was passed, Ron rapidly got the filters actually working and tunable. Over the next couple of weeks things got refined and a "Zero Beat" indicator was conceived. After a few more hurdles (the input to the Teensy 3.2's counter section had to be conditioned to make detecting the incoming tone reliable on lower levels of audio and limited so it wouldn't damage the Teensy's 3.3V (but 5V tolerant) digital input limits. Ron had the neat idea of making the actual indicator graphic look similar to one of the old "Magic Eye" indicators and so it starts out as a green ring and closes down to a solid green circle when the incoming tone matches the selected center frequency of the CW filter.

Finally, it was up to me (W0EB) as project coordinator and test engineer to create an accurate schematic from the working breadboard prototype. Once I had that finished, N5IB, the TSW PC layout engineer got the project and after a few emails back and forth, a viable PCB layout was agreed upon and boards ordered. Once the initial order of boards arrived I built up several to ensure that they worked correctly - I found a minor specification difference between the 74HC14 through hole part I used on the breadboard and the SMD version used on the PCB and wound up having to delete one resistor from the original design to get the 2nd stage of the zero beat audio conditioner to work reliably but other than that everything functioned as planned. The filter isn't perfect and there may or may not be digital noise while adjusting the various parameters of the filters. This is internal to the Teensy 3.2 MPU itself and try as we might, we have not been able to completely eliminate it. Once the filter is actually adjusted and you have a signal tuned in, the clicking from the Teensy's internal audio chain stops and there is very little additional noise introduced into the audio throughput by the filter.

The final stage was to actually build one into an enclosure, complete with all input/output jacks, digital encoder for adjustments, an audio output amplifier (The Teensy's output DAC doesn't have sufficient current output to drive headphones or speakers directly) and the 1.8" touch screen display. When I cut the window in the enclosure to mount the display, there were, as usual a few minor imperfections so N5IB came up with a nifty way to make bezels for this display. He just laid out a PCB and we had a few made. They turned out looking pretty nice so I think we'll Keep the idea. One of the chosen bezel designs is shown in all the pictures of the finished filter shown on this page.

__________________________________________________________________________________________________________

CW Filter Screen Graphics showing all the filter parameters

CW Filter Screen Graphics showing the "Zero Beat" indicator, signal close to being properly centered

CW Filter Screen Graphics "Zero Beat indicator showing the input signal exactly on the filter's center frequency

SSB Filter Screen Graphics

DIGital Filter Screen Graphics


The PC board construction uses 0805 sized SMD resistors and capacitors throughout as well as an SOIC-14 sized 74HC14 HEX inverter with Schmitt Trigger inputs. Actually, only two of the inverters are used in this application but the available parts are cheap enough that it was selected anyway due to it's specifications meeting all the circuit parameters for the Zero Beat signal input conditioner. The Teensy 3.2 MPU is socketed for ease of replacement should that ever be necessary. The 7805 regulator is shown without a heat sink. Originally one was specified but after extensive testing, I find that the 7805 runs only slightly warm without the heat sink so the requirement for it has been deleted from the final design.

Top view of the bare PC board

Bottom view of the bare PC board

Top view of a completed filter PC board

Bottom view of a completed filter PC board

This "Stand-Alone" DSP Audio Filter is being offered in partial kit form. The partial kit consists of the PC Board and ALL parts except the Teensy 3.2 MPU, ER-TFTM018-2 1.8" Color TFT Resistive Touch display, mounting hardware and a case to install things in. We include the controls, audio amplifier module and even the knobs for the controls. Oh, and we include a bezel for the display as well. The only parts you have to get yourself are the Teensy 3.2, display, a case (minimum panel height 2") and whatever hardware you wind up needing to mount the main board, amplifier and display in the case you pick.

Download Filter Construction Manual (PDF)

Download Filter Operating Manual (PDF)

Source Code files for the Stand-Alone Audio Filter.
We found that we forgot to mention a necessary library that has been modified for the display. This library needs to overwrite the existing library of the same name in the IDE's "hardware/teensy/avr/libraries" directory. The library that must be overwritten is TFT_ILI9163C. Download the modified library's zip file from our "MANDATORY_LIBRARIES" directory or via the link below, unzip it to your desktop or a separate directory and copy it into the "hardware/teensy/avr/libraries" directory. It will ask you if you want to overwrite the existing files and YES you want to overwrite those files. Once that's done you will also need to do the same anytime you upgrade your IDE to make sure the modified library' gets installed with the upgraded IDE. This will allow the Filter programs to compile AND display properly on the 1.8" TFT touch screen of the filter system.
TFT_ILI9163C.zip display library modified for use with the 1.8" display used in the filter.

Kits are now available for order and pricing is as follows: Domestic US price for the kit as described is $35 which includes first class small package shipping withing the US & it's posessions. International pricing is USD $50 which includes First Class (small package) shipping but excludes any VAT and/or Customs duties that the destination country may charge. To check on availability and ordering instructions, contact Jim, W0EB through the link below.



Contact Jim, W0EB.
Contact Ron, W2CTX.



Page, link pages & all images copyright (c) 2018, 2019. Last updated by W0EB - 05/13/2019 @ 19:00 UTC